Classes of Bivariate Orthogonal Polynomials

نویسندگان

  • Mourad E.H. ISMAIL
  • Ruiming ZHANG
چکیده

We introduce a class of orthogonal polynomials in two variables which generalizes the disc polynomials and the 2-D Hermite polynomials. We identify certain interesting members of this class including a one variable generalization of the 2-D Hermite polynomials and a two variable extension of the Zernike or disc polynomials. We also give q-analogues of all these extensions. In each case in addition to generating functions and three term recursions we provide raising and lowering operators and show that the polynomials are eigenfunctions of second-order partial differential or q-difference operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bivariate Chebyshev-i Weighted Orthogonal Polynomials on Simplicial Domains

We construct a simple closed-form representation of degree-ordered system of bivariate Chebyshev-I orthogonal polynomials Tn,r(u, v, w) on simplicial domains. We show that these polynomials Tn,r(u, v, w), r = 0, 1, . . . , n; n ≥ 0 form an orthogonal system with respect to the Chebyshev-I weight function.

متن کامل

Image representation using separable two-dimensional continuous and discrete orthogonal moments

This paper addresses bivariate orthogonal polynomials, which are a tensor product of two different orthogonal polynomials in one variable. These bivariate orthogonal polynomials are used to define several new types of continuous and discrete orthogonal moments. Some elementary properties of the proposed continuous Chebyshev–Gegenbauer moments (CGM), Gegenbauer–Legendre moments (GLM), and Chebys...

متن کامل

Construction of orthogonal bases for polynomials in Bernstein form on triangular and simplex domains

A scheme for constructing orthogonal systems of bivariate polynomials in the Bernstein–Bézier form over triangular domains is formulated. The orthogonal basis functions have a hierarchical ordering by degree, facilitating computation of least-squares approximations of increasing degree (with permanence of coefficients) until the approximation error is subdued below a prescribed tolerance. The o...

متن کامل

Bivariate Factorizations Connecting Dickson Polynomials and Galois Theory

In his Ph.D. Thesis of 1897, Dickson introduced certain permutation polynomials whose Galois groups are essentially the dihedral groups. These are now called Dickson polynomials of the first kind, to distinguish them from their variations introduced by Schur in 1923, which are now called Dickson polynomials of the second kind. In the last few decades there have been extensive investigations of ...

متن کامل

Two variable orthogonal polynomials and structured matrices

We consider bivariate real valued polynomials orthogonal with respect to a positive linear functional. The lexicographical and reverse lexicographical orderings are used to order the monomials. Recurrence formulas are derived between polynomials of different degrees. These formulas link the orthogonal polynomials constructed using the lexicographical ordering with those constructed using the re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016